Some remarks on multiplier ideals and vector bundles

نویسنده

  • Roberto Paoletti
چکیده

In this paper, we give two applications of the theory of multiplier ideals to vector bundles over complex projective manifolds, generalizing to higher rank results already established for line bundles. The first addresses the existence of sections of (suitable twists) of symmetric powers of a very ample vector bundle, vanishing on a given subvariety. The second is a vanishing theorem of Gri‰ths type, adjusted with an additional multiplier ideal term as in the standard Nadel vanishing theorem. To begin with, we recall that, starting with work of Bombieri and Skoda, there has been considerable interest in going from hypersurfaces in P highly singular at a given set of points S to hypersurfaces through S of relatively low degree; there is now a very direct and terse approach based on multiplier ideals [3], [4], [5], [6]. Here, the same method is shown to yield a statement in the same spirit about sections of very ample vector bundles on a projective manifold. One says that a rank r holomorphic vector bundle on a complex projective manifold is very ample if the relative hyperplane line bundle OPE ð1Þ on the projectivised dual PE is very ample. If X is a projective manifold and ZJX an irreducible subvariety, for every integer pd 1 the p-th symbolic power I hpi Z JOZ of the ideal sheaf of Z is the ideal sheaf of the holomorphic functions vanishing with multiplicity dp along Z (that is, at a generic point of Z ).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

. A G ] 1 3 O ct 2 00 6 UNITARY LOCAL SYSTEMS , MULTIPLIER IDEALS , AND POLYNOMIAL PERIODICITY OF HODGE NUMBERS

The space of unitary local systems of rank one on the complement of an arbitrary divisor in a complex projective algebraic variety can be described in terms of parabolic line bundles. This space is a natural setting for studying global invariants of singularities involving multiplier ideals. We show that multiplier ideals provide natural stratifications of this space. We prove a structure theor...

متن کامل

1 9 O ct 2 00 6 UNITARY LOCAL SYSTEMS , MULTIPLIER IDEALS , AND POLYNOMIAL PERIODICITY OF HODGE NUMBERS

The space of unitary local systems of rank one on the complement of an arbitrary divisor in a complex projective algebraic variety can be described in terms of parabolic line bundles. This space is a natural setting for studying global invariants of singularities involving multiplier ideals. We show that multiplier ideals provide natural stratifications of this space. We prove a structure theor...

متن کامل

1 1 O ct 2 00 6 UNITARY LOCAL SYSTEMS , MULTIPLIER IDEALS , AND POLYNOMIAL PERIODICITY OF HODGE NUMBERS

The space of unitary local systems of rank one on the complement of an arbitrary divisor in a complex projective algebraic variety can be described in terms of parabolic line bundles. This space is a natural setting for studying global invariants of singularities involving multiplier ideals. We show that multiplier ideals provide natural stratifications of this space. We prove a structure theor...

متن کامل

Birational Models of the Moduli Spaces of Stable Vector Bundles over Curves

We give a method to construct stable vector bundles whose rank divides the degree over curves of genus bigger than one. The method complements the one given by Newstead. Finally, we make some systematic remarks and observations in connection with rationality of moduli spaces of stable vector bundles.

متن کامل

Non-Commutative Vector Bundles for Non-Unital Algebras

We revisit the characterisation of modules over non-unital C∗-algebras analogous to modules of sections of vector bundles. A fullness condition on the associated multiplier module characterises a class of modules which closely mirror the commutative case. We also investigate the multiplier-module construction in the context of bi-Hilbertian bimodules, particularly those of finite numerical inde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003